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Abstract

Anomaly detection plays a critical role in enabling robust navigation for au-
tonomous robots in off-road environments. While diffusion models offer a powerful
approach to anomaly detection, their slow inference time and high computational
cost limit real-world applicability. This paper proposes a multi-faceted optimiza-
tion strategy to improve the efficiency of diffusion-based anomaly detection. Our
approach integrates three key techniques: (1) Denoising Diffusion Implicit Models
(DDIM) to reduce the number of denoising steps, (2) latent space compression
using Deep Compression Autoencoders (DC-AE) to operate within a reduced
dimensional space, and (3) weight-only quantization to reduce model size and
computational overhead. We evaluate these methods both individually and in com-
bination, achieving substantial improvements in inference speed, GPU memory
usage, and model size, with only a minor impact on detection accuracy. Our best
approach regarding inference time, DDIM with 250-steps, achieves a 66.3% time
reduction while preserving 98.8% of the baseline AUC-PR score representing
anomaly detection performance. Quantized DCAE requires only 15.2% of the orig-
inal GPU memory and still obtain 72% of baseline AUC-PR score. These results
pave the way for real-time anomaly detection on resource-constrained edge devices,
supporting the deployment of robust robotic navigation systems in challenging envi-
ronments. Code can be found at https://github.com/xinyunsunshine/Tiny-Anomaly-
by-Synthesis. The demo video can be found at https://youtu.be/cJTyEO5FPxU.

1 Introduction

Robust anomaly detection is essential for the navigation of autonomous robots in off-road and
unstructured environments (1; 15; 7; 18). Perception systems used for off-road navigation, such as
those relying on semantic segmentation (23; 24; 9), are typically trained on limited, domain-specific
datasets, such as RUGD (25). When deployed, these systems often encounter environments where
in the wild input images contain “out-of-distribution” (OOD) anomalies that are not adequately
captured in the training data. Therefore,to ensure safe and reliable navigation in unfamiliar off-road
environments, robots need to detect such anomalies to proactively address potential perception
failures.

To this end, Jiang et al. (11) introduce an analysis-by-synthesis approach for anomaly detection
using generative diffusion models. The pipeline of the method is shown in Fig. 1. In the synthesis
step, this method uses a novel energy-guidance technique for diffusion models to edit an image by
removing out-of-distribution (OOD) anomalies while keeping the remaining image unchanged. The
new, synthesized image represents what the scene would have looked like had it not contained any
anomalies. In order to detect anomalies, in the analysis step, this method analyzes which image
segments were modified by the diffusion model using a combination of foundation vision models:
MaskCLIP (4), FeatUp (8) and SAM (12).

The approach introduces several notable advantages. Unlike many existing methods, it avoids making
any assumptions about the characteristics of anomalies that might be encountered during testing (11).
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Furthermore, it eliminates the need for OOD data during the training phase. By utilizing diffusion
guidance (22), the method performs input image editing as a post-hoc, test-time procedure, requiring
neither re-training nor fine-tuning of the diffusion model. (11).

However, this approach is not without downsides. The inference phase of this method suffers from
significant runtime inefficiencies, making it unsuitable for real-time applications. After simple
profiling steps (see Fig. 1), we see that the Denoising Diffusion Probabilistic Models (10) used by this
framework requires iterative denoising through up to 1,000 timesteps to generate high-quality images.
This iterative process leads to substantial latency, with each image generation taking approximately 30
seconds. Such delays make deploying the method on real robotic systems, where real-time anomaly
detection is critical, infeasible. Furthermore, the approach is hindered by extended training times,
which poses a significant drawback. This limitation arises from the need for domain-specific training
and overfitting to effectively distinguish in-distribution data from OOD anomalies.

To address these challenges, we propose a multi-faceted optimization strategy tailored to the
computational bottlenecks of the diffusion pipeline for anomaly detection. First, we will integrate
Denoising Diffusion Implicit Models (DDIM) (21), which decrease the number of required denoising
steps. Additionally, we exploit model sparsity by quantizing diffusion U-Net weights using techniques
like SVDQuant (13). To further reduce inference time, we apply Deep Compression Autoencoders
(DC-AE) (2), which optimize the diffusion pipeline by operating within a compressed latent space,
significantly reducing dimensionality and computational demands while maintaining accuracy. By
integrating these techniques, we achieve significant improvements in training speed, inference
efficiency, and GPU memory utilization. These advancements pave the way for transforming
diffusion-based anomaly detection into a practical, real-time solution, well-suited for robotic
deployment in dynamic environments.

2 Related Work

The primary objective of this project is to improve the efficiency of the diffusion model in our anomaly
detection pipeline. We review relevant approaches and prior work in these areas. Specifically, we
explore quantization techniques, diffusion model acceleration methods, and model compression.

2.1 Latent Space Diffusion

Recent works have shown that performing diffusion in a compressed latent space rather than the pixel
space can significantly reduce computational requirements. Latent Diffusion Models (LDM) (17)
was initially introduced to facilitate diffusion model training on limited computational resources
while preserving quality and flexibility. By leveraging a rich latent space, LDM achieves impressive
synthesis results on image data and beyond. Other works focus on enhancing the reconstruction
accuracy of the autoencoder (5). Deep Compression Autoencoder (DCAE) (3) introduces residual
autoencoding and decoupled high-resolution adaptation to achieve higher spatial compression ratios,
allowing for a greater speed-up while maintaining reconstruction quality.

2.2 Quantization

Quantization has emerged as a key technique for reducing model size and computation cost by
reducing the precision of model parameters such as weights and activations. The most naive form
of quantization involves directly clamping the parameters values or linearly mapping floating-point
values to lower-precision integer values with a uniform scaling factor. Depending on specific
model use cases, various methods provides different levels of more sophisticated quantization while
optimizing model performance. PTQ4DM (19) proposes 8-bit (W8A8) post-training quantization
(PTQ) on diffusion models on smaller and lower resolutions datasets. Q-Diffusion (14) achieves
W4A8 quantization by implementing timestep-aware calibration and split shortcut quantization. More
aggressively, SVD-Quant (13) achieves a quantization of int 4 bit (W4A4) by consolidating outliers
of weights and activation and integrating them into a high-precision low-rank branch.
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Figure 1: Runtime Profiling of Anomalies by Synthesis. The results highlight the runtime ineffi-
ciencies of the DDPM (10) within the synthesis pipeline, where the denoising process accounts for
the majority of the computational time, rendering it unsuitable for real-time applications.

Figure 2: Qualitative Performance Analysis of DC-AE (3) on the RUGD Dataset (25). The
pretrained DC-AE (3) demonstrates effective performance, as there is no noticeable degradation in
picture quality between the original and reconstructed images.

2.3 Diffusion Model Acceleration

2.3.1 Reducing denoising steps

Our project focuses on speeding up the diffusion model of the OOD detection pipeline. One promising
approach is Denoising Diffusion Implicit Models (DDIM) (20). It accelerates the diffusion process by
reformulating the generative steps into a deterministic mapping that reduces the number of diffusion
steps. Specifically, while DDPM uses a Markovian forward and reverse process, DDIM introduces a
non-Markovian sampling mechanism that allows it to generate samples with fewer steps.

2.3.2 Distillation

Additionally, distillation methods have been applied to diffusion models to simplify the sampling
process. Distillation creates smaller models that mimic the original diffusion model’s behavior but
operate with few steps. Progressive Distillation for Fast Sampling (Salimans, 2022) demonstrates the
potential for enhancing generation speed without compromising accuracy, which could be critical for
the deployment of diffusion models in TinyML contexts.

3 Methodology

In this section, we introduce three of our optimization techniques in details.

3.1 DDIM

We leverage Denoising Diffusion Implicit Models (DDIM) to reduce the number of diffusion steps and
thus speed up the inference process. We adapt DDIM to our anomaly detection problem. Specifically,
we perform a similarity-guided DDIM process, so that the generated image is sampled from training
data distribution but also similar to the input OOD image. Jiang et al. (11) analyzes the theoretical
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guidance gradient for energy-based conditional generation and derives a principled approximation.
We combine their derived guidance gradient approximation and the DDIM formulation to perform
guided DDIM.

3.1.1 Problem Formulation

Pixel-wise anomaly detection Task: We address pixel-wise anomaly detection in RGB images,
where anomalies are implicitly defined as unlikely under the training distribution q(x0). Given
training images Dtrain = {x(n)

0 }Nn=1 ∼ q(x0), we train a generative model to approximate q(x0). At
test time, given an input xinput

0 , the goal is to detect anomalous pixels without prior assumptions about
anomalies.

Synthesis formulation: The detection is structured in three stages: Training, Synthesis and Analysis.
Here we focus on Synthesis. At test time, anomalies are identified by synthesizing an edited image
xedit
0 via:

xedit
0 ∼ q(xedit

0 | xinput
0 ) ∝ q(xedit

0 )︸ ︷︷ ︸
likelihood under training distribution

rsim(x
edit
0 ,xinput

0 )︸ ︷︷ ︸
similarity to input image

(1)

where rsim(x
edit
0 ,xinput

0 ) ensures similarity to xinput
0 . This process edits xinput

0 to remove anomalies
while retaining in-distribution pixels.

3.1.2 Generalized Guidance for DDIM

Jiang et al. (11) extends classifier guidance to a setting where the conditioner is any non-negative
function. They prove that for a diffusion model trained on q(x0:T ), the conditional distribution
q(x0:T | xinput

0 ) ∝ q(x0:T ) rsim(x0, x
input
0 ) can be sampled using the guidance gradient:

g∗t (xt) = ∇xt
logEq(x0|xt)

[
rsim(x0, x

input
0 )

]
(2)

And it can be approximated as

g∗t (xt) ≈ ∇xt
log rsim

(
µ0(xt), x

input
0

)
= gt(xt) (3)

where µ0(xt) is the expected value of x0 under q(x0 | xt). This guides xt to increase the similarity
of the denoised image x0 with the input xinput

0 .

We combine the guidance gradient approximation (Eq. 3) with the DDIM generative process detailed
in Eq. 4 to derive the Similarity-guided DDIM image editing algorithm (Alg. 1).

xt−1 ←
√
αt−1

(
xt −

√
1− αt ϵ

(t)
θ (xt)√

αt

)
︸ ︷︷ ︸

“predicted x0”

+
√

1− αt−1 − σ2
t ϵ

(t)
θ (xt)︸ ︷︷ ︸

“direction pointing to xt”

+ σt ϵt︸︷︷︸
random noise

(4)

In line 3 of Alg. 1, we calculate the expected value of x0 given xt by subtracting a scaled version of
ϵθt (xt) from xt, since ϵθt (xt) is trained to predict the expected noise ϵ that produced xt from x0. In
line 4 of Alg. 1, the log gradient of the similarity metric is computed to guide the generation closer to
the input image.
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Figure 3: Inference pipeline for latent compression optimization alone. The DiT (16) diffusion
model now operates in the latent space of the autoencoders.

Algorithm 1 Similarity-guided DDIM to edit input image and remove anomalies

procedure GUIDEDDIFFUSION(ϵθt , xinput
0 , rsim, s)

1: xT ← sample from N (0, I)

2: for t from T to 1 do

3: µθ
0(xt) := Eq[x0 | xt] ≈ 1√

αt
xt −

√
1−ᾱt√
αt

ϵθt (xt)

4: gt(xt)← ∇xt
log rsim(µ

θ
0(xt),x

input
0 )

5: ϵ̂← ϵθt (xt)− s
√
1− ᾱtgt(xt)

6: xt−1 ←
√
ᾱt−1

(
xt−

√
1−ᾱt ϵ̂√
ᾱt

)
+
√
1− ᾱt−1ϵ̂+ σt ϵt

7: end for

8: return xedit
0 := x0

Algorithm 1: Inputs: (1) ϵθt : denoising diffusion model fit to training image distribution q(x0)rsim.
(2) xinput

0 : input image at test-time potentially containing anomaly segments. (3) rsim: similarity
metric between two images. We use L2 distance rsim(x,y) = ∥x− y∥22) (4) s: guidance scale. The
larger the guidance scale, the more important the similarity metric is in diffusion process.

Output: xedit
0 : edited version of xinput

0 sampled from q(x0)rsim that removes anomalies.

While standard reverse diffusion is designed to sample from q(x0), the image similarity metric
rsim(x0,x

input
0 ) guides the generated image x0 to be close to xinput

0 using guided diffusion. This is
achieved by including the log-gradient of rsim.

3.2 Latent Space Compression

Jiang et al.(11) employ a Denoising Diffusion Probabilistic Model (DDPM) as a subroutine for
the diffusion model, operating directly in the image space. This design, however, incurs high
computational costs during inference. To mitigate this, we propose a novel approach inspired by the
Deep Compression Autoencoder (DC-AE)(3), and take advantage of the relatively low-rank nature of
anomaly detection tasks. Specifically, we first evaluate the performance of the pretrained DC-AE
on the RUGD dataset (25), demonstrating its strong performance with no additional fine-tuning,
as illustrated in Fig.2. Building on this, we train an unconditional DiT(16) model in the latent
space of DC-AE (3), significantly reducing computational costs. Utilizing an NVIDIA RTX 3090
GPU, our training process was completed in a matter of hours, in contrast to the substantially more
resource-intensive setup required by the original Anomalies by Synthesis method (11).

The fine-tuned DiT (16) model operates within the latent space, leveraging classifier-free guidance
in conjunction with our custom condition function. This condition function, which incorporates
the gradient of similarity function, dynamically steers the generation process to ensure that the
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synthesized output remains consistent with the training distribution of the RUGD dataset (25) while
effectively removing undesired out-of-distribution (OOD) objects. Upon completing its edits in the
latent space, the autoencoder’s decoder reconstructs the edited representation back into the original
image space. The reconstructed image is then compared with the original input image, with SAM (12)
utilized to precisely identify and locate the OOD objects. This streamlined workflow not only
facilitates efficient and high-quality image editing but also enables robust anomaly synthesis while
maintaining computational feasibility, addressing key challenges in prior approaches.

3.3 Quantization

To optimize inference on resource-constrained edge devices, we aim to leverage model sparsity by
quantizing the diffusion U-Net weights into lower-bit representations.

Our initial approach draw on concepts from SVDQuant, which enables aggressive quantization while
preserving performance. However, our current model uses a DDPM implementation in PyTorch
(denoising-diffusion-pytorch), the U-Net structure of which is not compatible with the SVDQuant
open-source codebase. Even with moderate edits to the open-source codebase, only a few convolution
layers could be recognized and quantized.

Given the time constraints of this project, we shift to a naive weight-only quantization approach,
clamping weights of specific computational layers to lower precisions. We focused on quantizing key
layers, such as QKV projections and convolutions, while avoiding auxiliary layers. Our methodology
aims to identify the best precision levels and layers to quantize by evaluating three objectives: (1)
determining the optimal precision level, (2) selecting layers for quantization, and (3) assessing the
combined impact of quantization with other optimization techniques.

4 Experiment

4.1 Dataset

We use a off-road land navigation RUGD dataset (25), which contains real-world images collected
in off-road environments using mobile robot platforms with manually labeled pixelwise class an-
notations. Same as the baseline (11), we split the semantic categories into in-distribution labels
that contains mostly natural features., whereas classes like vehicle, building, person are defined as
out-of-distribution.

4.2 Experiment Setup

We evaluate the individual and combined effect of the three optimization methods (DDIM, Latent
Compression, Quantization) by applying them individually and combining Quantization with the
other two methods.

4.2.1 DDIM

The advantage of DDIM is that it does not retrain the DDPM checkpoints. DDIM employs a
non-Markovian diffusion process that maintains the same training objective as DDPMs (20). This
alignment allows DDIMs to adopt the pre-trained noise-prediction model from DDPMs without
necessitating additional training. Therefore, we directly apply the checkpoints in the DDPM baseline
(11).

The guidance scale of the DDIM process is determined based on parameter sweep to be 0.6 so that
the generated image is similar to the input image but also not too constrained to remove the anomaly
region. The effect of different guidance scales are shown in Fig. 4.

DDIM with Quantization: Since DDIM only changes the inference time, we can directly use the
quantized model with DDIM sampling for the experiment.

4.2.2 Latent Compression

Latent compression leverages the Deep Compression Autoencoder (DC-AE) (3) to reduce the
dimensionality of input data before applying the diffusion model. By operating within this compressed
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Figure 4: Qualitative Analysis of DDIM with Different Guidance scales: s refers to the guidance
scale. As the guidance scale increases from 0.2 to 1, the generated image becomes more similar to
the input OOD image. At s = 0.6, the OOD truck blends into the ground in the back.

latent space, the computational complexity of the diffusion process is significantly reduced without
requiring extensive retraining of the model. For this experiment, we fine-tuned the diffusion model
while keeping the DC-AE frozen on the RUGD dataset, allowing the diffusion model to adapt to
compressed latent representations without compromising the robustness of the pretrained DC-AE.
A guidance scale of 600 was determined through parameter sweeps, ensuring a balance between
removing anomalies and preserving the fidelity of the in-distribution regions.

DC-AE with Quantization: To further optimize efficiency, DC-AE was integrated with quantization
to 16 bits with selected layer (the quantization method with the best accuracy performance), wherein
specific layers of the diffusion model were quantized to lower-precision formats.

4.2.3 Quantization

Due to the time constraints and the incompatibility of SVDQuant with current model’s Unet, we
implement a more straightforward weight-only quantization strategy, clamping weights of of selected
layers to lower-precision. We experiment with precision levels (float 16 bit and int 8 bit) and explored
which layers to quantize. We eventually combine quantization with other optimization methods.

We apply quantization to key computational layers. Specifically, we quantize the QKV projections,
output projections, and ResNet convolution layers, which are responsible for the bulk of the model’s
computational workload. We avoid quantization of auxiliary components like bias terms, gates,
down-sampling and up-sampling operations, normalization layers, and the first and last layers. These
layers and generally known to be more sensitive to quantization.

To evaluate performance, we measured the impact of quantization on efficiency and accuracy metrics,
comparing results across various experiments. We selected the optimal approach—quantizing only a
subset of the U-Net’s layers into float16 precision—as our final quantization strategy and proceeded
to combine it with other optimization methods. Hereafter, if not specified otherwise, “quantization”
refers to this selected-layer float16 quantization.

4.3 Results

Overall, DDIM maintains the highest accuracy with large inference time decrease (1/8 - 1/2 depending
on number of time steps).

DC-AE achieves a substantial reduction in computational requirements with lower inference time
and GPU memory usage while maintaining an acceptable level of reconstruction quality.

Quantization leads to significant reductions in model size but also causes non-negligible accuracy
degradation. Out of the experiments, targeting selected layers with float16 quantization achieves a
better balance between accuracy preservation (90% of baseline AUC-PR) and efficiency gains.

4.3.1 DDIM

We visualize the changes in accuracy and inference time with respect to the number of denoising
steps in Fig. 5. The overall trend aligns with expectations: dereasing the number of steps decreases
latency at the cost of accuracy.

The AUPCR score, a pixel-wise accuracy metric, exhibits small amount of decline with fewer steps.
In contrast, the F1 score, an object-wise accuracy metric, deteriorates more significantly as the step
size decreases. This disparity is due to the fact that pixel-level evaluation metrics can often neglect
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Accuracy Metrics Efficiency Metrics

AUC-PR (↑) f* score (↑) GPU mem (↓) inference time (↓)

1 DDPM Baseline 0.724 0.858 8844 17.82

2 DDIM (125 steps) 0.707 0.607 8510 3.47
3 DDIM (250 steps) 0.715 0.610 8528 5.35

D
D

IM

4 DDIM (500 steps) 0.721 0.600 8654 9.28

5 Quantize all weights to int8 0.539 0.618 4380 16.83
6 Quantize all weights to float16 0.547 0.647 6929 16.91
7 Quantize selected layers to int8 0.517 0.633 5237 17.09

Q
ua

nt
iz

at
io

n

8 Quantize selected layers to float16 0.672 0.672 7630 17.12

9 DCAE 0.523 0.564 2696 12.52

10 Best DDIM (250) 0.715 0.610 8528 5.35
11 Best Quantization (selected float16) 0.672 0.672 7630 17.12

Su
m

m
ar

y

12 DCAE 0.523 0.564 2696 12.52

13 Quantized DDIM (125 steps) 0.595 0.560 7347 3.45
14 Quantized DDIM (250 steps) 0.610 0.576 7399 5.36
15 Quantized DDIM (500 steps) 0.621 0.574 7525 9.27

C
om

bi
ne

d

16 Quantized DCAE 0.522 0.564 1348 12.52

Table 1: Anomaly detection accuracies and efficiencies across variation optimizations on RUGD
dataset. represents our original baseline, and shows the individual optimization performance
with different ablations, summarizes the best result for each optimization and combines DDIM
and DCAE with quantization. The bottom section represents the final results with all the optimization
methods. GPU memory is in MiB and inference time refers to the time needed to generate one image
in seconds.
small anomalies and be biased towards anomalies with large sizes. This suggests that DDIMs are
effective at detecting large anomalies but less effective at identifying small ones. The quanlitative
result of DDIM wiht different step sizes are shown in Fig. 6.

As for latency metrics, the relationship between the number of steps and latency is nearly linear, as
expected. GPU memory usage slightly decreases as the number of steps decreases. This reduction
occurs because the number of parameters (e.g. ᾱt) stored during the inference process decreases with
the number of steps.

(a) Accuracy metrics vs DDIM step size (b) Efficiency metrics vs DDIM step size

Figure 5: Analysis of DDIM Performance under Different Step Sizes

4.3.2 Latent Compression

The compressed latent space reduced dimensionality by a factor of 64, leading to significant compu-
tational savings. The results in Table 1 highlight the impact of latent compression on both accuracy
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Figure 6: Qualitative Analysis of DDIM with Different Step Sizes: As the number of denoising
steps decrease, the latency decreases, but the quality of the generated image and thus the uncertainty
also decreases. In this example, while the anomaly is removed in all images, the images generated
with more time keep the remaining parts more similar to the input image.

and efficiency metrics. By operating in the compressed latent space, the GPU memory usage dropped
to 2696 MiB, and the inference time was reduced to 12.52 seconds—a substantial improvement over
the 8844 MiB and 17.82 seconds required by the baseline DDPM model. Despite the compression,
the anomaly detection accuracy was retained at a reasonable level, with an AUC-PR of 0.523 and an
F* score of 0.564, making it a practical solution for resource-constrained applications.

Latent compression enables the diffusion model to balance efficiency and performance. Although
there is a trade-off in terms of accuracy compared to DDIM, the approach achieves a good compromise
by maintaining acceptable anomaly detection metrics while significantly reducing computational
demands. This result underscores the value of latent compression for scalable, real-time deployment
in edge environments.

4.3.3 Quantization

Model Type Baseline all layers to int8 all layers to float16 selected to int8 selected to float16

Model Size 136.3 34.08 68.26 67.26 90.28

Table 2: Model size (in MB) for different quantization strategies.

We evaluated the impact of quantization strategies on accuracy and efficiency, as shown in Table
2 and 1. Quantizing all layers to int8 achieved the smallest model size (34.08 MB) and fastest
inference but caused significant accuracy loss (AUC-PR: 0.539). Float16 quantization for all layers
slightly improved accuracy (AUC-PR: 0.547) but still considerably underperformed relative to the
baseline AUC-PR of 0.724. Selective float16 quantization of key layers provided the best balance,
preserving most of the baseline accuracy (AUC-PR: 0.672) while reducing model size (90.28 MB)
and inference time. Selective int8 quantization was more efficient (model size: 67.26 MB) but less
accurate (AUC-PR: 0.517).

Overall, selective float16 quantization emerged as the most effective strategy, offering a strong
balance between accuracy and efficiency for edge-device deployment.

4.3.4 DDIM with Quantization

The results of DDIM with quantization are visualized in Fig. 7. As expected, DDIM applied to the
quantized model has lower accuracy compared to the original, unquantized model. Additionally,
same as the unquantized case, the model’s accuracy decreases as the number of denoising steps in
DDIM is reduced. For AUCPR, we observe that the performance gap widens as the number of DDIM
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timesteps is reduced. With fewer timesteps, the model has less opportunity to refine predictions,
amplifying quantization-induced errors that result in noisier intermediate representations and a loss
of fine-grained details crucial for maintaining a high AUCPR.

The memory required during inference is lower for the quantized model compared to the original.
Furthermore, the trend of reduced memory usage with a smaller number of timesteps remains.

(a) Accuracy metrics vs DDIM step size (b) Efficiency metrics vs DDIM step size

Figure 7: Analysis of quantized DDIM Performance under Different Step Sizes

4.3.5 DC-AE with Quantization

The combination of DC-AE with quantization further optimizes GPU memory usage while maintain-
ing inference efficiency. Table 1 highlights the results for both the original and quantized versions of
DC-AE.

By applying quantization, the GPU memory usage was reduced significantly from 2696 MiB in
the original DC-AE to 1348 MiB—a 50% reduction—without impacting the inference time, which
remained steady at 12.52 seconds. The anomaly detection performance, as measured by AUC-PR and
F* score, showed negligible differences: 0.523 vs. 0.522 (AUC-PR) and 0.564 for both (F* score).
This result demonstrates that quantization successfully enhances efficiency without a significant
compromise in accuracy.

Limitation and Future Work

Jiang et al. (11) investigated various timestep matching methods for guided diffusion, including
forward timestep matching and no timestep matching. In this study, we focused exclusively on the
method with the best evaluation results: reverse timestep matching. It would be interesting to explore
how different timestep matching methods perform in the context of guided DDIM. Additionally,
several recent methods aim to accelerate the diffusion process by reducing the number of denoising
steps, such as one-step diffusion via shortcut models(6), which could potentially be incorporated into
our framework.

To avoid unacceptable degradation in performance, we adopted a conservative approach by applying
float16 quantization to only selected layers. Future work could focus on developing a SVDQuant for
the current model, enabling more aggressive quantization and significantly reducing model size. This
approach could potentially better support deployment on resource-constrained edge devices.

While latent space compression significantly improves computational efficiency, it introduces chal-
lenges such as potential loss of fine-grained details critical for detecting subtle anomalies. Addition-
ally, the pretraining of autoencoders requires careful alignment with the target distribution to avoid
representation bias. Future work could focus on adaptive compression techniques that dynamically
adjust the latent space resolution based on input complexity. Further exploration of hybrid autoen-
coders incorporating both global and local features may also enhance anomaly detection robustness
without sacrificing efficiency.
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5 Conclusion

This study introduced a multi-faceted optimization strategy to enhance the efficiency of diffusion-
based anomaly detection, specifically targeting its application in resource-constrained environments
like autonomous robotics. By integrating Denoising Diffusion Implicit Models (DDIM), latent
space compression with Deep Compression Autoencoders (DC-AE), and weight quantization, the
proposed methods achieved significant improvements in inference time, GPU memory usage, and
computational overhead, while maintaining acceptable anomaly detection accuracy.

DDIM notably reduced inference latency with minimal accuracy loss, making it a viable solution
for real-time applications. Latent space compression offered substantial computational savings,
emphasizing its potential for scalable deployments on edge devices. Selective quantization helps
slightly reduce GPU memory and inference time.

The combined application of these techniques demonstrated the practicality of transforming computa-
tionally intensive diffusion models into efficient, real-time solutions for off-road anomaly detection.
Despite these advancements, challenges remain in preserving fine-grained anomaly details during
compression and extending quantization methodologies for more aggressive optimizations without
performance degradation. Future work could explore dynamic latent space resolution, more so-
phisticated quantization methods such as SVDQuant, and alternative timestep strategies for further
accelerating the diffusion process to refine the balance between computational efficiency and anomaly
detection robustness.

Contribution

• Sunshine is responsible for the DDIM and DDIM + quantization sections.

• Wenqi and Xinran are responsible for the quantization section.

• Stephen and Qianru are responsible for the latent compression and latent compression +
quantization sections.
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